Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
1.
J Am Soc Mass Spectrom ; 35(2): 365-377, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38175933

RESUMO

The accumulation of very large ion populations in traveling wave (TW)-based Structures for Lossless ion Manipulations (SLIM) has been studied to better understand aspects of "in-SLIM" ion accumulation, and particularly its use in conjunction with ion mobility spectrometry (IMS). A linear SLIM ion path was implemented that had a "gate" for blocking and accumulating ions for arbitrary time periods. Removing the gate potential caused ions to exit, and the spatial distributions of accumulated ions examined. The ion populations for a set of peptides increased approximately linearly with increased accumulation times until space change effects became significant, after which the peptide precursor ion populations decreased due to growing space charge-related ion activation, reactions, and losses. Ion activation increased with added storage times and the TW amplitude. Lower amplitude TWs in the accumulation/storage region prevented or minimized ion losses or ion heating effects that can also lead to fragmentation. Our results supported the use of an accumulation region close to the SLIM entrance for speeding accumulation, minimizing ion heating, and avoiding ion population profiles that result in IMS peak tailing. Importantly, space charge-driven separations were observed for large populations of accumulated species and attributed to the opposing effects of space charge and the TW. In these separations, ion species form distributions or peaks, sometimes moving against the TW, and are ordered in the SLIM based on their mobilities. Only the highest mobility ions located closest to the gate in the trapped ion population (and where the highest ion densities were achieved) were significantly activated. The observed separations may offer utility for ion prefractionation of ions and increasing the dynamic range measurements, increasing the resolving power of IMS separations by decreasing peak widths for accumulated ion populations, and other purposes benefiting from separations of extremely large ion populations.


Assuntos
Espectrometria de Mobilidade Iônica , Peptídeos , Espectrometria de Mobilidade Iônica/métodos , Peptídeos/análise , Íons/química
2.
JSES Rev Rep Tech ; 3(4): 454-460, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37928987

RESUMO

Purpose: Peripheral neuropathies after shoulder arthroscopy are rare, though likely under-reported. Many resolve spontaneously, but some patients are left with permanent neurological deficits. The purpose of this study was to review the literature to better characterize this patient population, diagnostic tests performed, the timing and type of surgical intervention, and report clinical outcomes. Methods: A systematic literature review was performed. Articles in English were identified from PubMed, EMBASE, and CINAHL in August 2021. Article titles and abstracts were screened for relevance by two authors and discordant abstracts were resolved by the senior author. Data were subsequently extracted from the included articles. Results: Seventeen articles were identified yielding a total of 91 patients. The average age was 53 ± 12 years, and most patients were male (72%). Rotator cuff repair (62%) was the most common procedure performed. A peripheral neuropathy was identified an average of 80 ± 81 days from the index procedure (range, 0-240 days). Most commonly, peripheral nerve injury presented as a mononeuropathy, with the median nerve (39%) and ulnar nerve (17%) affected predominantly. Seventeen percent of patients underwent a secondary surgery at an average of 232 ± 157 days after the index procedure. At the final follow-up, 55% of neuropathies had resolved, 14% partially improved, and 22% showed no clinical improvement. The most proposed etiologies were postoperative immobilization (29%) and intraoperative positioning (20%), but several possible etiologies have been suggested. Conclusions: Peripheral neuropathies after arthroscopic shoulder procedures are rare. While most spontaneously resolve, up to 1 in 5 patients may have persistent neuropathic symptoms. A high index of suspicion should be maintained throughout the postoperative period. When neurologic deficits are identified, patients should undergo a thorough diagnostic workup and be referred to a subspecialist in a timely manner.

3.
Ann Med ; 55(1): 2208372, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37722890

RESUMO

BACKGROUND: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and fibromyalgia have overlapping neurologic symptoms particularly disabling fatigue. This has given rise to the question whether they are distinct central nervous system (CNS) entities or is one an extension of the other. MATERIAL AND METHODS: To investigate this, we used unbiased quantitative mass spectrometry-based proteomics to examine the most proximal fluid to the brain, cerebrospinal fluid (CSF). This was to ascertain if the proteome profile of one was the same or different from the other. We examined two separate groups of ME/CFS, one with (n = 15) and one without (n = 15) fibromyalgia. RESULTS: We quantified a total of 2083 proteins using immunoaffinity depletion, tandem mass tag isobaric labelling and offline two-dimensional liquid chromatography coupled to tandem mass spectrometry, including 1789 that were quantified in all the CSF samples. ANOVA analysis did not yield any proteins with an adjusted p value <.05. CONCLUSION: This supports the notion that ME/CFS and fibromyalgia as currently defined are not distinct entities.Key messageME/CFS and fibromyalgia as currently defined are not distinct entities.Unbiased quantitative mass spectrometry-based proteomics can be used to discover cerebrospinal fluid proteins that are biomarkers for a condition such as we are studying.


Assuntos
Síndrome de Fadiga Crônica , Fibromialgia , Humanos , Proteoma , Síndrome de Fadiga Crônica/diagnóstico , Fibromialgia/diagnóstico , Sistema Nervoso Central , Encéfalo
4.
Anal Chem ; 95(25): 9531-9538, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37307303

RESUMO

High-resolution ion mobility spectrometry-mass spectrometry (HR-IMS-MS) instruments have enormously advanced the ability to characterize complex biological mixtures. Unfortunately, HR-IMS and HR-MS measurements are typically performed independently due to mismatches in analysis time scales. Here, we overcome this limitation by using a dual-gated ion injection approach to couple an 11 m path length structures for lossless ion manipulations (SLIM) module to a Q-Exactive Plus Orbitrap MS platform. The dual-gate setup was implemented by placing one ion gate before the SLIM module and a second ion gate after the module. The dual-gated ion injection approach allowed the new SLIM-Orbitrap platform to simultaneously perform an 11 m SLIM separation, Orbitrap mass analysis using the highest selectable mass resolution setting (up to 140 k), and high-energy collision-induced dissociation (HCD) in ∼25 min over an m/z range of ∼1500 amu. The SLIM-Orbitrap platform was initially characterized using a mixture of standard phosphazene cations and demonstrated an average SLIM CCS resolving power (RpCCS) of ∼218 and an SLIM peak capacity of ∼156, while simultaneously obtaining high mass resolutions. SLIM-Orbitrap analysis with fragmentation was then performed on mixtures of standard peptides and two reverse peptides (SDGRG1+, GRGDS1+, and RpCCS = 305) to demonstrate the utility of combined HR-IMS-MS/MS measurements for peptide identification. Our new HR-IMS-MS/MS capability was further demonstrated by analyzing a complex lipid mixture and showcasing SLIM separations on isobaric lipids. This new SLIM-Orbitrap platform demonstrates a critical new capability for proteomics and lipidomics applications, and the high-resolution multimodal data obtained using this system establish the foundation for reference-free identification of unknown ion structures.


Assuntos
Espectrometria de Mobilidade Iônica , Espectrometria de Massas em Tandem , Espectrometria de Mobilidade Iônica/métodos , Peptídeos/análise , Íons/química , Proteômica/métodos
5.
Sci Rep ; 13(1): 3008, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810894

RESUMO

Binding MOAD is a database of protein-ligand complexes and their affinities with many structured relationships across the dataset. The project has been in development for over 20 years, but now, the time has come to bring it to a close. Currently, the database contains 41,409 structures with affinity coverage for 15,223 (37%) complexes. The website BindingMOAD.org provides numerous tools for polypharmacology exploration. Current relationships include links for structures with sequence similarity, 2D ligand similarity, and binding-site similarity. In this last update, we have added 3D ligand similarity using ROCS to identify ligands which may not necessarily be similar in two dimensions but can occupy the same three-dimensional space. For the 20,387 different ligands present in the database, a total of 1,320,511 3D-shape matches between the ligands were added. Examples of the utility of 3D-shape matching in polypharmacology are presented. Finally, plans for future access to the project data are outlined.


Assuntos
Polifarmacologia , Ligantes , Bases de Dados de Proteínas , Sítios de Ligação , Ligação Proteica
6.
Mass Spectrom Rev ; 42(2): 796-821, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34719806

RESUMO

Cancers are caused by accumulated DNA mutations. This recognition of the central role of mutations in cancer and recent advances in next-generation sequencing, has initiated the massive screening of clinical samples and the identification of 1000s of cancer-associated gene mutations. However, proteomic analysis of the expressed mutation products lags far behind genomic (transcriptomic) analysis. With comprehensive global proteomics analysis, only a small percentage of single nucleotide variants detected by DNA and RNA sequencing have been observed as single amino acid variants due to current technical limitations. Proteomic analysis of mutations is important with the potential to advance cancer biomarker development and the discovery of new therapeutic targets for more effective disease treatment. Targeted proteomics using selected reaction monitoring (also known as multiple reaction monitoring) and parallel reaction monitoring, has emerged as a powerful tool with significant advantages over global proteomics for analysis of protein mutations in terms of detection sensitivity, quantitation accuracy and overall practicality (e.g., reliable identification and the scale of quantification). Herein we review recent advances in the targeted proteomics technology for enhancing detection sensitivity and multiplexing capability and highlight its broad biomedical applications for analysis of protein mutations in human bodily fluids, tissues, and cell lines. Furthermore, we review recent applications of top-down proteomics for analysis of protein mutations. Unlike the commonly used bottom-up proteomics which requires digestion of proteins into peptides, top-down proteomics directly analyzes intact proteins for more precise characterization of mutation isoforms. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale targeted detection and quantification of important protein mutations are discussed.


Assuntos
Proteínas , Proteômica , Humanos , Espectrometria de Massas , Peptídeos/química , Mutação
7.
Elife ; 112022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36355598

RESUMO

A wide range of techniques in neuroscience involve placing individual probes at precise locations in the brain. However, large-scale measurement and manipulation of the brain using such methods have been severely limited by the inability to miniaturize systems for probe positioning. Here, we present a fundamentally new, remote-controlled micropositioning approach composed of novel phase-change material-filled resistive heater micro-grippers arranged in an inchworm motor configuration. The microscopic dimensions, stability, gentle gripping action, individual electronic control, and high packing density of the grippers allow micrometer-precision independent positioning of many arbitrarily shaped probes using a single piezo actuator. This multi-probe single-actuator design significantly reduces the size and weight and allows for potential automation of microdrives. We demonstrate accurate placement of multiple electrodes into the rat hippocampus in vivo in acute and chronic preparations. Our robotic microdrive technology should therefore enable the scaling up of many types of multi-probe applications in neuroscience and other fields.


Assuntos
Neurônios , Procedimentos Cirúrgicos Robóticos , Animais , Ratos , Eletrofisiologia/métodos , Eletrodos Implantados , Encéfalo
8.
Ann Plast Surg ; 89(6): 679-683, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416700

RESUMO

BACKGROUND: In implant-based breast surgery, infections remain a clinically challenging complication. Surgeons often prophylactically address this risk by irrigating the implant at the time of placement. However, there remain few data on the ideal irrigant for gram-negative species. METHODS: The authors assessed the relative efficacy of 10% povidone-iodine, triple-antibiotic solution, Prontosan, Clorpactin, and normal saline (negative control) against 3 gram-negative bacterial backgrounds: Escherichia coli , Pseudomonas aeruginosa , and Proteus species. A laboratory-adapted strain and a clinical isolate were selected for each group of bacteria. Sterile, smooth implant discs were immersed in each irrigant solution and then incubated in suspensions of each bacterial strain overnight at 37°C. Each disc was then rinsed and sonicated to displace biofilm-forming bacteria from the implant surface. The displaced bacteria were enumerated by plating, and normalized values were calculated for the bacterial counts of each irrigant. RESULTS: Povidone-iodine resulted in the greatest reduction of bacterial load for all 6 strains by a factor of 10 1 to 10 6 . Prontosan had a lesser, yet significant reduction in all bacterial strains. Triple-antibiotic solution demonstrated the greatest reduction in one Proteus species strain, and Clorpactin reduced bacterial counts in only half of the bacterial strains. When comparing laboratory strains to clinical isolates, significant differences were seen in each bacterial species in at least 2 irrigant solutions. CONCLUSIONS: Povidone-iodine has been proven the most effective at reducing bacterial contamination of E. coli, P. aeruginosa , and Proteus species in both laboratory-adapted strains and clinical isolates. CLINICAL RELEVANCE: This study proves that povidone-iodine is the most effective at preventing gram-negative infections in breast implant surgery.


Assuntos
Implante Mamário , Implantes de Mama , Humanos , Povidona-Iodo/farmacologia , Escherichia coli , Antibacterianos
9.
Am J Pathol ; 192(12): 1658-1669, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36243044

RESUMO

Alcohol-associated hepatitis (AH) is a form of liver failure with high short-term mortality. Recent studies have shown that defective function of hepatocyte nuclear factor 4 alpha (HNF4a) and systemic inflammation are major disease drivers of AH. Plasma biomarkers of hepatocyte function could be useful for diagnostic and prognostic purposes. Herein, an integrative analysis of hepatic RNA sequencing and liquid chromatography-tandem mass spectrometry was performed to identify plasma protein signatures for patients with mild and severe AH. Alcohol-related liver disease cirrhosis, nonalcoholic fatty liver disease, and healthy subjects were used as comparator groups. Levels of identified proteins primarily involved in hepatocellular function were decreased in patients with AH, which included hepatokines, clotting factors, complement cascade components, and hepatocyte growth activators. A protein signature of AH disease severity was identified, including thrombin, hepatocyte growth factor α, clusterin, human serum factor H-related protein, and kallistatin, which exhibited large abundance shifts between severe and nonsevere AH. The combination of thrombin and hepatocyte growth factor α discriminated between severe and nonsevere AH with high sensitivity and specificity. These findings were correlated with the liver expression of genes encoding secreted proteins in a similar cohort, finding a highly consistent plasma protein signature reflecting HNF4A and HNF1A functions. This unbiased proteomic-transcriptome analysis identified plasma protein signatures and pathways associated with disease severity, reflecting HNF4A/1A activity useful for diagnostic assessment in AH.


Assuntos
Carcinoma Hepatocelular , Hepatite Alcoólica , Neoplasias Hepáticas , Humanos , Transcriptoma , Fator de Crescimento de Hepatócito/genética , Proteômica , Trombina/metabolismo , Hepatite Alcoólica/diagnóstico , Proteínas/genética , Biomarcadores
10.
PNAS Nexus ; 1(3): pgac084, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35923912

RESUMO

Activating mutations in RAS GTPases drive nearly 30% of all human cancers. Our prior work described an essential role for Argonaute 2 (AGO2), of the RNA-induced silencing complex, in mutant KRAS-driven cancers. Here, we identified a novel endogenous interaction between AGO2 and RAS in both wild-type (WT) and mutant HRAS/NRAS cells. This interaction was regulated through EGFR-mediated phosphorylation of Y393-AGO2, and utilizing molecular dynamic simulation, we identified a conformational change in pY393-AGO2 protein structure leading to disruption of the RAS binding site. Knockdown of AGO2 led to a profound decrease in proliferation of mutant HRAS/NRAS-driven cell lines but not WT RAS cells. These cells demonstrated oncogene-induced senescence (OIS) as evidenced by ß-galactosidase staining and induction of multiple downstream senescence effectors. Mechanistically, we discovered that the senescent phenotype was mediated via induction of reactive oxygen species. Intriguingly, we further identified that loss of AGO2 promoted a novel feed forward pathway leading to inhibition of the PTP1B phosphatase and activation of EGFR-MAPK signaling, consequently resulting in OIS. Taken together, our study demonstrates that the EGFR-AGO2-RAS signaling axis is essential for maintaining mutant HRAS and NRAS-driven malignancies.

11.
J Am Soc Mass Spectrom ; 33(5): 783-792, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35437008

RESUMO

We evaluated the effect of four different waveform profiles (Square, Sine, Triangle, and asymmetric Sawtooth) on the accuracy of collision cross section (CCS) measurements using traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM). The effects of the waveform profiles on the accuracy of the CCS measurements were evaluated for four classes of compounds (lipids, peptides, steroids, and nucleosides) at different TW speeds (126-206 m/s) and amplitudes (15-89 V). For the lipids and peptides, the TWIMS-based CCS (TWCCS) deviations from the corresponding drift-tube-based CCS (DTCCS) measurements were significantly lower in experiments conducted using the Sawtooth waveform compared to the square waveform. This observation can be rationalized by the lower maximum electric field experienced by ions with a Sawtooth waveform, as compared to the other waveforms, resulting in a lower probability for significant ion heating. We also observed that given approximately comparable resolution for all four waveforms, the Sawtooth waveform resulted in lower TWCCS error and a better agreement with DTCCS values than the Square waveform. In addition, for the steroids and nucleosides, an opposite TWCCS trend was observed, with higher errors with the Sawtooth waveform and lower with the Square waveform, suggesting that these molecules tend to become slightly more compact under ion heating conditions. Under optimum conditions, all TWCCS measurements on the SLIM platform were within 0.5% of those measured in the drift tube ion mobility spectrometry.


Assuntos
Nucleosídeos , Peptídeos , Íons/química , Lipídeos , Peptídeos/análise , Esteroides
12.
Cell Syst ; 13(5): 426-434.e4, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35298923

RESUMO

Single-cell proteomics (scProteomics) promises to advance our understanding of cell functions within complex biological systems. However, a major challenge of current methods is their inability to identify and provide accurate quantitative information for low-abundance proteins. Herein, we describe an ion-mobility-enhanced mass spectrometry acquisition and peptide identification method, transferring identification based on FAIMS filtering (TIFF), to improve the sensitivity and accuracy of label-free scProteomics. TIFF extends the ion accumulation times for peptide ions by filtering out singly charged ions. The peptide identities are assigned by a three-dimensional MS1 feature matching approach (retention time, accurate mass, and FAIMS compensation voltage). The TIFF method enabled unbiased proteome analysis to a depth of >1,700 proteins in single HeLa cells, with >1,100 proteins consistently identified. As a demonstration, we applied the TIFF method to obtain temporal proteome profiles of >150 single murine macrophage cells during lipopolysaccharide stimulation and identified time-dependent proteome changes. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Proteoma , Proteômica , Animais , Cromatografia Líquida/métodos , Células HeLa , Humanos , Íons , Camundongos , Peptídeos/química , Proteoma/análise , Proteômica/métodos
13.
Anal Chem ; 94(4): 2180-2188, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34939415

RESUMO

Ion mobility spectrometry employing structures for lossless ion manipulations (SLIM-IMS) is an attractive gas-phase separation technique due to its ability to achieve unprecedented effective ion path lengths (>1 km) and IMS resolving powers in a small footprint. The emergence of multilevel SLIM technology, where ions are transferred between vertically stacked SLIM electrode surfaces, has subsequently allowed for ultralong single-pass path lengths (>40 m) to be achieved, enabling ultrahigh resolution IMS measurements to be performed over the entire mobility range in a single experiment. Here, we report on the development of a 1 m path length miniature SLIM module (miniSLIM) based on multilevel SLIM technology. Ion trajectory simulations were used to optimize SLIM board spacings and SLIM board thicknesses, and a new method of efficiently transferring ions between SLIM levels using asymmetric traveling waves (TWs) was demonstrated. We experimentally characterized the performance of the miniSLIM IMS-MS relative to a drift tube IMS-MS using Agilent tuning mixture cations and tetraalkylammonium cations. The miniSLIM achieved a resolving power of up to 131 (CCS/ΔCCS), which is ∼1.5× higher than achievable with a 78 cm path length drift tube IMS. Additionally, the entire ion mobility range was successfully transmitted in a single separation. We also demonstrated the miniSLIM's performance as a standalone IMS system (i.e., without MS), which showed baseline separation between all AgTM cations and a clear differentiation between different charge states of a standard peptide mixture. Overall, the miniSLIM provides a compact alternative to high performance IMS instruments possessing similar path lengths.


Assuntos
Espectrometria de Mobilidade Iônica , Peptídeos , Eletrodos , Espectrometria de Mobilidade Iônica/métodos , Íons/química , Peptídeos/análise
14.
Anal Chem ; 93(45): 14966-14975, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34726890

RESUMO

The unanticipated discovery of recent ultra-high-resolution ion mobility spectrometry (IMS) measurements revealing that isotopomers─compounds that differ only in the isotopic substitution sites─can be separated has raised questions as to the physical basis for their separation. A study comparing IMS separations for two isotopomer sets in conjunction with theory and simulations accounting for ion rotational effects provides the first-ever prediction of rotation-mediated shifts. The simulations produce observable mobility shifts due to differences in gas-ion collision frequency and translational-to-rotational energy transfer. These differences can be attributed to distinct changes in the moment of inertia and center of mass between isotopomers. The simulations are in broad agreement with the observed experiments and consistent with relative mobility differences between isotopomers. These results provide a basis for refining IMS theory and a new foundation to obtain additional structural insights through IMS.


Assuntos
Espectrometria de Mobilidade Iônica
15.
Methods Mol Biol ; 2259: 247-257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33687720

RESUMO

Protein phosphorylation is a critical posttranslational modification (PTM), with cell signaling networks being tightly regulated by protein phosphorylation. Despite recent technological advances in reversed-phase liquid chromatography (RPLC)-mass spectrometry (MS)-based proteomics, comprehensive phosphoproteomic coverage in complex biological systems remains challenging, especially for hydrophilic phosphopeptides that often have multiple phosphorylation sites. Herein, we describe an MS-based phosphoproteomics protocol for effective quantitative analysis of hydrophilic phosphopeptides. This protocol was built upon a simple tandem mass tag (TMT)-labeling method for significantly increasing peptide hydrophobicity, thus effectively enhancing RPLC-MS analysis of hydrophilic peptides. Through phosphoproteomic analyses of MCF7 cells, this method was demonstrated to greatly increase the number of identified hydrophilic phosphopeptides and improve MS signal detection. With the TMT labeling method, we were able to identify a previously unreported phosphopeptide from the G protein-coupled receptor (GPCR) CXCR3, QPpSSSR, which is thought to be important in regulating receptor signaling. This protocol is easy to adopt and implement and thus should have broad utility for effective RPLC-MS analysis of the hydrophilic phosphoproteome as well as other highly hydrophilic analytes.


Assuntos
Fosfopeptídeos/análise , Proteômica/métodos , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoprecipitação/métodos , Células MCF-7 , Fosfopeptídeos/isolamento & purificação , Proteoma/análise , Proteoma/isolamento & purificação , Espectrometria de Massas em Tandem/métodos
16.
Commun Biol ; 4(1): 265, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649493

RESUMO

Large numbers of cells are generally required for quantitative global proteome profiling due to surface adsorption losses associated with sample processing. Such bulk measurement obscures important cell-to-cell variability (cell heterogeneity) and makes proteomic profiling impossible for rare cell populations (e.g., circulating tumor cells (CTCs)). Here we report a surfactant-assisted one-pot sample preparation coupled with mass spectrometry (MS) method termed SOP-MS for label-free global single-cell proteomics. SOP-MS capitalizes on the combination of a MS-compatible nonionic surfactant, n-Dodecyl-ß-D-maltoside, and hydrophobic surface-based low-bind tubes or multi-well plates for 'all-in-one' one-pot sample preparation. This 'all-in-one' method including elimination of all sample transfer steps maximally reduces surface adsorption losses for effective processing of single cells, thus improving detection sensitivity for single-cell proteomics. This method allows convenient label-free quantification of hundreds of proteins from single human cells and ~1200 proteins from small tissue sections (close to ~20 cells). When applied to a patient CTC-derived xenograft (PCDX) model at the single-cell resolution, SOP-MS can reveal distinct protein signatures between primary tumor cells and early metastatic lung cells, which are related to the selection pressure of anti-tumor immunity during breast cancer metastasis. The approach paves the way for routine, precise, quantitative single-cell proteomics.


Assuntos
Neoplasias da Mama/metabolismo , Glucosídeos/química , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Células Neoplásicas Circulantes/metabolismo , Proteoma , Proteômica , Análise de Célula Única , Tensoativos/química , Animais , Neoplasias da Mama/patologia , Cromatografia Líquida , Feminino , Humanos , Neoplasias Pulmonares/secundário , Células MCF-7 , Camundongos , Micrometástase de Neoplasia , Células Neoplásicas Circulantes/patologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
17.
Anal Chem ; 92(22): 14976-14982, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33136380

RESUMO

The collision cross section (CCS) is an important property that aids in the structural characterization of molecules. Here, we investigated the CCS calibration accuracy with traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM) using three sets of calibrants. A series of singly negatively charged phospholipids and bile acids were calibrated in nitrogen buffer gas using two different TW waveform profiles (square and sine) and amplitudes (20, 25, and 30 V0-p). The calibration errors for the three calibrant sets (Agilent tuning mixture, polyalanine, and one assembled in-house) showed negligible differences using a sine-shaped TW waveform. Calibration errors were all within 1-2% of the drift tube ion mobility spectrometry (DTIMS) measurements, with lower errors for sine waveforms, presumably due to the lower average and maximum fields experienced by ions. Finally, ultrahigh-resolution multipass (long path length) SLIM TWIMS separations demonstrated improved CCS calibration for phospholipid and bile acid isomers.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Ácidos e Sais Biliares/química , Calibragem , Eletrodos , Espectrometria de Mobilidade Iônica/instrumentação , Isomerismo , Espectrometria de Massas , Peptídeos/química , Fosfolipídeos/química
18.
J Vis Exp ; (165)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33226031

RESUMO

Protein analysis of small numbers of human cells is primarily achieved by targeted proteomics with antibody-based immunoassays, which have inherent limitations (e.g., low multiplex and unavailability of antibodies for new proteins). Mass spectrometry (MS)-based targeted proteomics has emerged as an alternative because it is antibody-free, high multiplex, and has high specificity and quantitation accuracy. Recent advances in MS instrumentation make MS-based targeted proteomics possible for multiplexed quantification of highly abundant proteins in single cells. However, there is a technical challenge for effective processing of single cells with minimal sample loss for MS analysis. To address this issue, we have recently developed a convenient protein carrier-assisted one-pot sample preparation coupled with liquid chromatography (LC) - selected reaction monitoring (SRM) termed cLC-SRM for targeted proteomics analysis of small numbers of human cells. This method capitalizes on using the combined excessive exogenous protein as a carrier and low-volume one-pot processing to greatly reduce surface adsorption losses as well as high-specificity LC-SRM to effectively address the increased dynamic concentration range due to the addition of exogeneous carrier protein. Its utility has been demonstrated by accurate quantification of most moderately abundant proteins in small numbers of cells (e.g., 10-100 cells) and highly abundant proteins in single cells. The easy-to-implement features and no need for specific devices make this method readily accessible to most proteomics laboratories. Herein we have provided a detailed protocol for cLC-SRM analysis of small numbers of human cells including cell sorting, cell lysis and digestion, LC-SRM analysis, and data analysis. Further improvements in detection sensitivity and sample throughput are needed towards targeted single-cell proteomics analysis. We anticipate that cLC-SRM will be broadly applied to biomedical research and systems biology with the potential of facilitating precision medicine.


Assuntos
Proteômica/métodos , Alquilação , Contagem de Células , Fracionamento Celular , Linhagem Celular , Cromatografia Líquida , Análise de Dados , Receptores ErbB/metabolismo , Citometria de Fluxo , Humanos , Sistema de Sinalização das MAP Quinases , Espectrometria de Massas/métodos , Desnaturação Proteica , Tripsina/metabolismo
19.
Anal Chem ; 92(15): 10588-10596, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32639140

RESUMO

Single-cell proteomics can provide critical biological insight into the cellular heterogeneity that is masked by bulk-scale analysis. We have developed a nanoPOTS (nanodroplet processing in one pot for trace samples) platform and demonstrated its broad applicability for single-cell proteomics. However, because of nanoliter-scale sample volumes, the nanoPOTS platform is not compatible with automated LC-MS systems, which significantly limits sample throughput and robustness. To address this challenge, we have developed a nanoPOTS autosampler allowing fully automated sample injection from nanowells to LC-MS systems. We also developed a sample drying, extraction, and loading workflow to enable reproducible and reliable sample injection. The sequential analysis of 20 samples containing 10 ng tryptic peptides demonstrated high reproducibility with correlation coefficients of >0.995 between any two samples. The nanoPOTS autosampler can provide analysis throughput of 9.6, 16, and 24 single cells per day using 120, 60, and 30 min LC gradients, respectively. As a demonstration for single-cell proteomics, the autosampler was first applied to profiling protein expression in single MCF10A cells using a label-free approach. At a throughput of 24 single cells per day, an average of 256 proteins was identified from each cell and the number was increased to 731 when the Match Between Runs algorithm of MaxQuant was used. Using a multiplexed isobaric labeling approach (TMT-11plex), ∼77 single cells could be analyzed per day. We analyzed 152 cells from three acute myeloid leukemia cell lines, resulting in a total of 2558 identified proteins with 1465 proteins quantifiable (70% valid values) across the 152 cells. These data showed quantitative single-cell proteomics can cluster cells to distinct groups and reveal functionally distinct differences.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Nanotecnologia/métodos , Proteômica/métodos , Análise de Célula Única/métodos , Automação , Linhagem Celular Tumoral , Humanos
20.
Acta Orthop ; 91(6): 782-788, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32691656

RESUMO

Background and purpose - Biological patches can be used to augment rotator cuff tendon repair in an attempt to improve healing and reduce rates of re-rupture. However, little is known about the in vivo tissue response to these patches. We assessed native rotator cuff tissue response after surgical repair and augmentation with 2 commercially available extracellular matrix (ECM) patches. Patients and methods - Patients underwent a rotator cuff repair augmented with either GraftJacket (Wright Medical), Permacol (Zimmer Biomet), or no patch (Control), applied using an onlay technique. A sample of supraspinatus tendon was collected intraoperatively and 4 weeks post-surgery, using ultrasound-guided biopsy. Histology and immunohistochemistry were performed on all samples. Results - The Permacol group (n = 3) and GraftJacket group (n = 4) demonstrated some changes in native tendon ECM compared with the control group (n = 3). Significant disruption of the extracellular matrix of the repaired native supraspinatus, underlying both patches, was observed. The patches did not generally increase cellularity, foreign body giant cell count, or vascularity compared to the control group. 1 patient in the Permacol group had an adverse tissue immune response characterized by extensive infiltration of IRF5+, CD68+, and CD206+ cells, suggesting involvement of macrophages with a pro-inflammatory phenotype. No significant differences in protein expression of CD4, CD45, CD68, CD206, BMP7, IRF5, TGFß, and PDPN were observed among the groups. Interpretation - Histological and immunohistochemical analysis of native tendon tissue after patch augmentation in rotator cuff repair raises some concerns about a lack of benefit and potential for harm from these materials.


Assuntos
Artroplastia , Colágeno , Biópsia Guiada por Imagem/métodos , Inflamação , Teste de Materiais/métodos , Lesões do Manguito Rotador/cirurgia , Manguito Rotador , Artroplastia/efeitos adversos , Artroplastia/instrumentação , Artroplastia/métodos , Materiais Biocompatíveis/efeitos adversos , Materiais Biocompatíveis/uso terapêutico , Colágeno/efeitos adversos , Colágeno/uso terapêutico , Feminino , Reação a Corpo Estranho/etiologia , Reação a Corpo Estranho/imunologia , Reação a Corpo Estranho/patologia , Humanos , Inflamação/etiologia , Inflamação/imunologia , Inflamação/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Avaliação de Processos e Resultados em Cuidados de Saúde , Manguito Rotador/irrigação sanguínea , Manguito Rotador/imunologia , Ultrassonografia/métodos , Reino Unido , Cicatrização/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA